Optimization of the Q factor in photonic crystal microcavities
نویسندگان
چکیده
منابع مشابه
Optimization of the Q Factor in Photonic Crystal Microcavities
We express the quality factor of a mode in terms of the Fourier transforms of its field components and prove that the reduction in radiation loss can be achieved by suppressing the mode’s wavevector components within the light cone. Although this is intuitively clear, our analytical proof gives us insight into how to achieve the factor optimization, without the mode delocalization. We focus on ...
متن کاملSpectroscopy of terahertz radiation using high- Q photonic crystal microcavities
We report observation of high-Q resonance in the photoresponse of a detector embedded in the 2D photonic crystal slab (PCS) microcavity illuminated by terahertz radiation. The detector and PCS are fabricated from a single GaAs wafer in a unified process. The influence of the period of PCS lattice, microcavity geometry, and detector location on the resonant photoresponse is studied. The resonanc...
متن کاملReconfigurable, Defect-Free, Ultrahigh-Q Photonic Crystal Microcavities for Sensing
We propose a new approach for creating reconfigurable high-Q cavities in defect-free photonic crystal slabs (PCSs). The approach relies on selective air-hole infiltration in otherwise defect-free PCSs. We show that using this method we can design ultrahigh-Q microcavities, with Q~10(6). Numerical calculations indicate a large number of high-Q modes with high sensitivity, which are ideal for sim...
متن کاملFabrication-tolerant high quality factor photonic crystal microcavities.
A two-dimensional photonic crystal microcavity design supporting a wavelength-scale volume resonant mode with a calculated quality factor (Q) insensitive to deviations in the cavity geometry at the level of Q~2x10(4) is presented. The robustness of the cavity design is confirmed by optical fiber-based measurements of passive cavities fabricated in silicon. For microcavities operating in the lam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Journal of Quantum Electronics
سال: 2002
ISSN: 0018-9197
DOI: 10.1109/jqe.2002.1017597